Archive | June 2015

Superconductivity and the Self Organisation of the Universe


New states can arise from far from equilibrium, possessing an extraordinary degree of order, whereby trillions of molecules coordinate their actions in space and time.  Prigogine coined the term “dissipative structures” to describe them, since they result from the exchange of matter and energy between system and environment, together with the production of entropy (dissipation) by the system.  The complex and mutually dependent processes leading to the formation of structures, collectively called “self organisation”…in such a universe, irreversible non-equilibrium thermodynamics allows for the possibility of self organisation leading to structures ranging from planets and galaxies to cells and organisations.  R Highfield and P Coveney 2015.

According to Masser (2006), it would be appropriate to represent the Big Bang not as a single event, but as an on going process of gradual formation out of chaos.  In other words the evolution of the universe is a continuous self organisation process that has led to its currently observed structure with a host of galaxies, galaxy clusters and planetary systems.

In some materials, the strong electron-electron correlations to other degrees of freedom with the complex many body quantum system lead to new, emergent properties that are controlled by a competition of fluctuation effects, characterised by phase transitions at critical temperature, where correlations lead to coordination with a macroscopic region – resulting in the breaking of a symmetry of the system.

Below the transition temperature, a new broken-symmetry ground state is found, which can possess a variety of novel, emergent properties that are macroscopically observed.  In condensed-matter physics, the complex interaction of many degrees of freedom, such as electrons, ions and spins leads to the formation of properties such as superconductivity, magnetism, charge density waves and orbitally ordered states.

Phase transitions can have a wide variety of important implications including the formation of topological defects , or it may even trigger a period of exponential expansion.

In current physics, from a theoretical perspective, insights from black hole physics and string theory indicate that our ‘macroscopic’ notions of spacetime and gravity are emergent from an underlying microscopic description in which they have no a priori meaning. Read More…